Posters
Contribution ID | Title | Name of Authors |
---|---|---|
11 | Robustness To Adversarial Examples Through An Ensemble Of Specialists | Mahdieh Abbasi, Universite Laval; Christian Gagne, Universite Laval |
12 | Prediction of Depression from User-generated Content in Social Media | Hayda Almeida, UQAM; Antoine Briand, UQAM; Diego Maupomé, UQAM; Marie-Jean Meurs, UQAM |
13 | Attentive Encoder Decoder dialogue system on the Ubuntu domain | Nicolas Angelard-Gontier, McGill & Nuance Communications ; Joumana Ghosn, Nuance Communications |
14 | A Closer Look at Memorization in Deep Networks | Devansh Arpit, MILA; Stanisław Jastrzębski, Jagiellonian University; Nicolas Ballas, MILA; David Krueger, MILA; Emmanuel Bengio, McGill; Maxinder S Kanwal, University of California; Tegan Maharaj, MILA; Asja Fischer, University of Bonn; Aaron Courville, MILA; Yoshua Bengio, MILA; Simon Lacoste-Julien, MILA |
15 | Unifying Multi-Step Methods through Matrix Splitting | Pierre-Luc Bacon, McGill; Doina Precup, McGill |
16 | Learning to Compute Word Embeddings On the Fly | Dzimitry Bahdanau, University of Montreal; Tom Bosc, University of Montreal; Stanisław Jastrzębski, Jagiellonian University; Edward Grefenstette, DeepMind; Pascal Vincent, University of Montreal; Yoshua Bengio, University of Montreal |
17 | Multi-label Semi-Supervised Classification of Social Media Documents applied via Different Machine Learning Algorithms | Billal Belainine, UQAM; Alexsandro Fonseca, UQAM; Fatiha Sadat, UQAM; Hakim Lounis, UQAM |
18 | Learning how the world works by unsupervised RL to disentangle independently controllable factors | Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc Sarfati, Philippe Beaudoin, Marie-Jean Meurs, Joelle Pineau, Doina Precup, Yoshua Bengio |
19 | Analog electronics for efficient neural network computation | Jonathan Binas, MILA; Daniel Neil, University of Zurich and ETH Zurich; Michael Pfeiffer, University of Zurich and ETH Zurich; Giacomo Indiveri, University of Zurich and ETH Zurich; Shih-Chii Liu, University of Zurich and ETH Zurich; Yoshua Bengio, MILA |
20 | Unsupervised induction of natural-language dependency structures | Chris Bruno, McGill University; Eva Portelance, Stanford University; Timothy J. O’Donnell, McGill University |
21 | Count-ception: Counting by Fully Convolutional Redundant Counting | Joseph Paul Cohen, University of Montreal |
22 | Chocolate — Black-Box Optimization for All | François-Michel De Rainville, NovaSyst; Olivier Gagnon, NovaSyst; Alexandre Vallières, NovaSyst; André Villemaire, NovaSyst |
23 | Reinforcement Learning as a Production Tool on AAA Games | Olivier Delalleau, Ubisoft Montreal; Adrien Logut, Ubisoft Montreal |
24 | Automatic Quality Control of infant MRI using a Convolutional Neural Network | Andrew Doyle, McGill Centre for Integrative Neuroscience, Montreal Neurological Institute; Paule-Joanne Toussaint, McGill Centre for Integrative Neuroscience, Montreal Neurological Institute; Greg Luneau, McGill Centre for Integrative Neuroscience, Montreal Neurological Institute; D. Louis Collins, Image Processing Laboratory, Montreal Neurological Institute; Alan C. Evans, McGill Centre for Integrative Neuroscience, Montreal Neurological Institute |
25 | Data imputation with latent variable models | Michal Drozdzal, MILA, Imagia; Mohammad Havaei, MILA, Imagia; Chin-Way Huang, MILA; Laurent Charlin, MILA; Nicolas Chapados, Imagia, ElementAI; Aaron Courville, MILA; |
26 | Streaming kernel regression with unknown variance | Audrey Durand, Laval University; Odalric-Ambrym Maillard, INRIA; Joelle Pineau, McGill University |
27 | Deep Indoor Illumination | Marc-André Gardner, Université Laval; Christian Gagné, Université Laval; Jean-François Lalonde, Université Laval; |
28 | To Veer or Not to Veer: Learning from Experts How to Stay Within the Crosswalk | Roger Girgis, McGill University; Manfred Diaz, Concordia University; |
29 | A Deep Neural Network Approach To Parallel Sentence Extraction | Francis Grégoire, RALI – Université de Montréal, Philippe Langlais, RALI – Université de Montréal |
30 | Memory Augmented Neural Networks with Wormhole Connections | Caglar Gulcehre, Deepmind; Sarath Chandar, University of Montreal; Yoshua Bengio, University of Montreal; |
31 | Asynchronous Advantage Option-Critic with Deliberation Cost | Jean Harb, McGill University; Pierre-Luc Bacon, McGill University; Doina Precup, McGill University |
32 | Recurrent Semi-Supervised Encoder-Multi-Decoder Networks for Motion Capture | Félix G. Harvey, Polytechnique Montreal & Montreal Institute for Learning Algorithms; Chrisopher Pal Polytechnique Montreal & Montreal Institute for Learning Algorithms |
33 | Deep Outdoor Illumination Estimation | Yannick Hold-Geoffroy, Université Laval; Kalyan Sunkavalli, Adobe; Sunil Hadap, Adobe; Emiliano Gambaretto Adobe; Jean-François Lalonde, Université Laval |
34 | Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control | Riashat Islam, McGill University; Peter Henderson, McGill University; Maziar Gomrokchi, McGill University; Doina Precup, McGill University |
35 | CASED: Curriculum Adaptive Sampling for Extreme Data Imbalance | Andrew Jesson, Imagia; Nicolas Guizard, Imagia; Sina Hamidi, Imagia; Damien Goblot, Imagia; Florian Soudan, Imagia; Nicolas Chapados, Imagia |
36 | parse Attentive Backtracking: Towards Efficient Credit AssignmentIn Recurrent Network | Nan Rosemary Ke, MILA, Polytechnique Montreal; Alex Lamb, MILA, University of Montreal; Anirudh Goyal, MILA, University of Montreal; Olexa Blaniuk, MILA, University of Montreal; Chris Pal, MILA, Polytechnique Montreal; Yoshua Bengio, MILA, University of Montreal |
37 | Conditional Hierarchical Passage Encodersfor Question Answering | Nan Rosemary Ke, MILA, Polytechnique Montreal; Alessandro Sordoni, Microsoft Maluuba; Zhouhan Lin, MILA, University of Montreal; Yoshua Bengio, MILA, University of Montreal; Laurent Chardlin, MILA, University of Montreal; Chris Pal, MILA, Poyltechnique Montreal |
38 | Deconstructive Defense against adversarial attacks | Nan Rosemary Ke, MILA, Polytechnique Montreal; Chin-wei Huang, MILA, University of Montreal; Chris Pal, MILA, Polytechnique Montreal |
39 | Clustering-Oriented Regularization in Neural Networks: Perspectives for Improving Representation Quality | Kian Kenyon-Dean, McGill University; Jackie Cheung, McGill University; Doina Precup, McGill University |
40 | Alternating Direction Method of Multipliers for Sparse Convolutional Neural Networks | Farkhondeh Kiaee, Université Laval; Christian Gagné, Université Laval; Mahdieh Abbasi, Université Laval |
41 | Bayesian Hypernets | David Krueger, MILA; Chin-wei Huang, MILA; Riashat Islam, McGill; Ryan Turner, MILA; Aaron Courville, MILA |
42 | Deep Prior | Alexandre Lacoste, Element AI; Thomas Boquet, Element AI; Boris Oreshkin, Element AI; Wonchang Chung, Element AI; Negar Rostamzadeh, Element AI; Vincent Dumoulin, Element AI; Aaron Courville, Element AI. |
43 | Intelligent cognitive assistants: Detection of critical user states and learning of expert decision rules | Daniel Lafond, Thales Research & Technology Canada; Jean-François Gagnon, Thales Research & Technology Canada; Nicolas Déry, Université Laval; Mark Parent, Université Laval; Sébastien Tremblay, Université Laval |
44 | Using the gradients’ covariance to improve training and generalization error | Nicolas Le Roux, Google Brain |
46 | SeaRNN: Training RNNs with Global-Local Losses | Remi Leblond, Inria / ENS Paris; Jean-Baptiste Alayrac, Inria / ENS Paris; Anton Osokin, Inria / ENS Paris; Simon Lacoste-Julien, MILA Université de Montréal |
47 | Bayesian Optimization for Conditional Hyperparameter Spaces | Julien-Charles Lévesque, Université Laval; Audrey Durand, Université Laval; Christian Gagné, Université Laval; Robert Sabourin, École de technologie supérieure |
48 | MIO-TCD: A new benchmark dataset for vehicle classification and localization | Zhiming Luo, Université de Sherbrooke, Frederic B.-Charron, Université de Sherbrooke, Carl Lemaire, Université de Sherbrooke, Janusz Konrad, Boston University, Shaozi Li, University of Xiamen, Akshaya Mishra, Miovision, Andrew Achkar, Miovision, Justin Eichel, Miovision, Pierre-Marc Jodoin, University of Sherbrooke. |
49 | Imitation Upper Confidence Bound for Bandits on a Graph | Andrei Lupu, Reasoning and Learning Lab, McGill; Doina Precup, Reasoning and Learning Lab, McGill |
50 | Reconnaissance d’activités et de plans appliquée à un robot-assistant pour les activités quotidiennes | Jean Massardi, UQAM ; Mathieu Gravel, UQAM ; Éric Beaudry, UQAM |
51 | Montreal Forced Aligner: trainable text-speech alignment using Kaldi | Michael McAuliffe, McGill Linguistics; Michaela Socolof, University of Maryland Linguistics; Sarah Mihuc, McGill Linguistics; Michael Wagner, McGill Linguistics; Morgan Sonderegger, McGill Linguistics |
52 | Robotic Vision for Industrial Robots | Jean-Philippe Mercier, Université Laval; Philippe Giguère, Université Laval |
53 | Unsupervised Extractive Summarization of Legal Text Using Probabilistic Modeling of Semantic Space | Isar Nejadgholi, Miralaw Inc.; Renaud Bougueng, Miralaw Inc.; Samuel Witherspoon, Miralaw Inc. |
54 | Coveo AI™ – Scalable Machine Learning Platform for Information Retrieval | Sébastien Paquet, Coveo; Jean-Francis Roy, Coveo; Michel Lemay, Coveo |
55 | Multitask Spectral Learning of Weighted Automata | Guillaume Rabusseau, McGill University; Borja Balle, Amazon Research; Joelle Pineau, McGill University |
56 | ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events | Evan Racah, Lawrence Berkeley Labs; Christopher Beckham, MILA; Tegan Maharaj, MILA; Prabhat, Lawrence Berkeley Labs; Samira Kahou, Microsoft; Christopher Pal, MILA |
57 | Real-Time Stable Style Transfer for Videos | Jeffrey Rainey, Element AI; Philippe Beaudoin, Element AI |
58 | Learning to Become an Expert: Deep Networks Applied to Super-Resolution Microscopy | Louis-Émile Robitaille, Université Laval; Audrey Durand, Université Laval; Marc-André Gardner, Université Laval; Christian Gagné, Université Laval; Paul De Koninck, Université Laval; Flavie Lavoie, Université Laval |
59 | A Frame Tracking Model for Memory-Enhanced Dialogue Systems | Hannes Schulz, Microsoft Maluuba; Jeremie Zumer, Microsoft Maluuba; Layla El Asri, Microsoft Maluuba; Shikhar Sharma, Microsoft Maluuba; |
60 | Twin Networks: Using the Future as a Regularizer | Dmitriy Serdyuk, MILA, University of Montreal; Rosemary Nan Ke, MILA, Polytechnique Montreal; Alessandro Sordoni, Microsoft Maluuba; Chris Pal, MILA, Polytechnique Montreal; Yoshua Bengio, MILA, university of Montreal |
61 | Variational Inference for Unsupervised Lexicon Learning | Elias Stengel-Eskin, McGill; Emily Kellison-Linn, McGill; Timothy J. O’Donnell, McGill |
62 | A new policy based RL algorithm with reduced bias and variance | Jayakumar Subramanian, McGill University; Aditya Mahajan, McGill University |
63 | Coordinated Multi-Agents Patrolling Algorithms | Najmeh Taleb, School of Computer Science, Carleton University, Ottawa, Ontario; Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa, Ontario; Jurek Czyzowicz, Dept. d’informatique, Univ. du Quebec en Outaouais, Gatineau, Quebec; |
64 | Learning Salient Features in Convolutional Neural Networks for Object Recognition | Ludovic Trottier, Laval University; Philippe Giguère, Laval University; Brahim Chaib-draa, Laval University |
65 | MACA: A Modular Architecture for Conversational Agents | Hoai Phuoc Truong, McGill University; Prasanna Parthasarathi, McGill University; Joelle Pineau, McGill University |
67 | On orthogonality and learning recurrent networks with long term dependencies | Eugene Vorontsov, MILA; Chiheb Trabelsi, MILA; Samuel Kadoury, Ecole Polytechnique de Montreal; Christopher Pal, MILA |
68 | Boosting Based Multiple Kernel Learning and Transfer Regression for Electricity Load Forecasting | Di Wu, McGill University; Boyu Wang Princeton University;Doina Precup, McGill University; Benoit Boulet McGill University |
69 | Learning High Dynamic Range from Outdoor Panoramas | Jinsong Zhang, Université Laval; Jean-François Lalonde, Université Laval; |
70 | GridNet with automatic shape prior registration for automatic MRI cardiac segmentation | Clément Zotti, Université de Sherbrooke, Zhiming Luo, Université de Sherbrooke, Alain Lalande, Université de Bourgogne, Olivier Humbert, Centre Antoine Lacassagne, Pierre-Marc Jodoin, Université de Sherbrooke |