List of accepted papers IDS can be found here.
Oral Presentations
- Cardiac MRI Segmentation with Strong Anatomical Guarantees, Nathan Painchaud (Université de Sherbrooke); Youssef Skandrani (Universite de Bourgogne Franche-Comté); Thierry Judge (Université de Sherbrooke); Olivier Bernard (Creatis); Alain Lalande (Universite de Bourgogne Franche-Comté); Pierre-Marc Jodoin (Universite de Sherbrooke)
- Temporal Knowledge Graph Completion, Rishab Goel (Borealis AI); Seyed Mehran Kazemi (Borealis AI); Marcus Brubaker (Borealis AI); Pascal Poupart (Borealis AI)
- Gossip-based Actor-Learner Architectures for Deep Reinforcement Learning, Mahmoud Assran (McGill University / Facebook AI Research); Joshua Romoff (McGill University); Nicolas Ballas (Facebook FAIR); Joelle Pineau (Facebook); Mike Rabbat (Facebook FAIR)
- Tackling Societal Problems of Climate Change with Machine Learning, Tegan Maharaj (MILA, Polytechnic Montreal); Sasha Luccioni (Mila); Kris Sankaran (Montreal Institute for Learning Algorithms)
- Gradient-Based Neural DAG Learning, Sebastien Lachapelle (Mila, Université de Montréal); Philippe Brouillard (Mila); Tristan Deleu (Mila, Université de Montréal); Simon Lacoste-Julien (Mila, Université de Montréal)
- Kotlin∇: A Shape Safe eDSL for Differentiable Functional Programming, Breandan M Considine (Mila); Liam Paull (Université de Montréal); Michalis Famelis (Université de Montréal)
- Deep learning techniques applied to thermal inspection of the underground distribution cables, Arnaud Zinflou (Hydro-Québec); Michel Trepanier (Hydro-Québec); Olfa Ben Sik Ali (Hydro-Québec); Luc Cauchon (Hydro-Québec); François Miralles (Hydro-Québec); Marc-Andre Magnan (Hydro-Québec); Jonathan Racine (Hydro-Québec)
- Reducing Noise in GAN Training with Variance Reduced Extragradient, Tatjana Chavdarova (Mila); Gauthier Gidel (Mila, Université de Montréal, Element AI); Francois Fleuret (Idiap Research Institute); Simon Lacoste-Julien (Mila, Université de Montréal)
- Recurrent Language Modeling with Multiplicative RNNs, Diego Maupomé (UQÀM); Marie-Jean Meurs (UQAM)
- Verifying Individual Fairness in Neural Networks, Golnoosh Farnadi (Polytechnique Montreal); Behrouz Babaki (Polytechnique Montreal); Michel Gendreau (Polytechnique Montreal)
Poster Presentations
- Reconstruction of Apical Two-Chamber View in Echocardiogram with Generative Encoder-Decoder Modeling, Akinori Higaki (Lady Davis Institute for Medical Research); Katsuji Inoue (Ehime University Graduate School of Medicine); Masaki Kinoshita (Ehime University Graduate School of Medicine); Shuntaro Ikeda (Ehime University Graduate School of Medicine); Osamu Yamaguchi (Ehime University Graduate School of Medicine)
- Interpretation of the Coronary Angioscopy with Deep Convolutional Neural Networks, Akinori Higaki (Lady Davis Institute for Medical Research); Toru Miyoshi (Osaka University Hospital); Hideo Kawakami (Ehime Prefectural Imabari Hospital); Osamu Yamaguchi (Ehime University Graduate School of Medicine)
- Unsupervised Temperature Scaling: An Unsupervised Post-Processing Calibration Method of Deep Networks, Azadeh Mozafari (Laval University); Hugo S Gomes (Laval University); Wilson Leao (Petrobras); Christian Gagné (Université Laval)
- A Principled Approach for Learning Task Similarity in Multitask Learning, Changjian Shui (Université Laval); Mahdieh Abbasi (Université Laval); Louis-Émile Robitaille (Université Laval); Boyu Wang (University of Pennsylvania); Christian Gagné (Université Laval)
- Adaptive Deep Kernel Learning, Prudencio Tossou (InVivo and Université Laval); Basile Dura (InVivo AI and MILA); Mario Marchand (Université Laval); Francois Laviolette (Université Laval); Alexandre Lacoste (Element AI)
- A Python Framework for Neat Machine Learning Pipelines, Guillaume Chevalier (Neuraxio)
- On the Sensitivity of RNN decoders, Nicolas Gontier (Mila, Polytechnique Montreal, Element AI); Chris J Pal (MILA, Polytechnique Montréal, Element AI)
- Fast Spatially-Varying Indoor Lighting Estimation, Mathieu Garon (Université Laval); Jean-Francois Lalonde (Université Laval)
- All-Weather Deep Outdoor Lighting Estimation, Jinsong Zhang (Université Laval); Kalyan Sunkavalli (Adobe Research); Yannick Hold-Geoffroy (Adobe Research); Sunil Hadap (Adobe); Jonathan Eisenman (Adobe Systems); Jean-Francois Lalonde (Université Laval)
- Structured Pruning of Neural Networks with Budget-Aware Regularization, Carl Lemaire (Universite de Sherbrooke); Pierre-Marc Jodoin (Universite de Sherbrooke)
- The Difficulty of Training Sparse Neural Networks, Utku Evci (Google AI); Fabian Pedregosa (Google); Erich Elsen (Google); Aidan Gomez ()
- Unsupervised State Representation Learning in Atari, Ankesh Anand (Mila); Evan Racah (Mila); Sherjil Ozair (Mila); Yoshua Bengio (Mila); Marc-Alexandre Côté (Microsoft Research); R Devon Hjelm (Microsoft Research)
- Unsupervised Behavior Change Detection in Multidimensional Data Streams for Maritime Traffic Monitoring, Lucas May Petry (Federal University of Santa Catarina); Amilcar Soares (Dalhousie University); Vania Bogorny (Federal University of Santa Catarina); Stan Matwin (Dalhouise University)
- On Direct Distribution Matching for Adapting Segmentation Networks, Georg Pichler (CentraleSupélec); Jose Dolz (ETS); Ismail Ben Ayed (ETS Montreal); Pablo Piantanida (CentraleSupélec – Mila)
- Latent Code and Text-based Generative Adversarial Networks for Soft-text Generation, Md. Akmal Haidar (Huawei Technologies); Mehdi Rezagholizadeh (Huawei Technologies); Alan Do-Omri (Huawei Technologies); Ahmad Rashid (Huawei Technologies)
- Bilingual-GAN: A Step Towards Parallel Text Generation, Ahmad Rashid (Huawei Technologies); Alan Do-Omri (Huawei Technologies); Md. Akmal Haidar (Huawei Technologies); Qun Liu (Huawei Noah’s Ark Lab); Mehdi Rezagholizadeh (Huawei Technologies)
- Using a Hybrid Generative Model Approach to Visualize Climate Change, Sasha Luccioni (Mila); Gautier Cosne (Mila); Sahil Bansal (Mila); Yoshua Bengio (Mila); Victor Schmidt (Mila)
- Generative Adversarial Learning for Unsupervised Person Re-Identification, Yacine Khraimeche (LITIV lab., Polytechnique Montreal); Guillaume-Alexandre Bilodeau (Polytechnique Montréal)
- Enhancing PIO Extraction from Abstract and Full Text of Medical Articles using Contextualised Embeddings, Hichem Mezaoui (IMRSV DATA LABS)
- Feature Fusion Architecture for Detection of Road Users in Video, Hughes Perreault (Polytechnique Montréal); Guillaume-Alexandre Bilodeau (Polytechnique Montréal); Nicolas Saunier (Polytechnique Montreal); Pierre Gravel (Genetec); Maguelonne Heritier (Genetec)
- Preference-Based Density Estimation, Vincent Dumoulin (Google); Pablo Samuel Castro (Google); Laurent Dinh (Google Research); Jesse Engel (Google); Hugo Larochelle (Google)
- A Modern Take on the Bias-Variance Tradeoff in Neural Networks, Brady Neal (Mila, Université de Montréal); Sarthak Mittal (MILA); Aristide Baratin (Mila, Université de Montréal); Vinayak Tantia (MILA); Matthew Scicluna (MILA); Simon Lacoste-Julien (Mila, Université de Montréal); Ioannis Mitliagkas (Mila & University of Montreal)
- GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects, Edward J Smith (McGill); Scott Fujimoto (McGill University); Adriana Romero (FAIR); David Meger (McGill University)
- Spectral Metric for Dataset Complexity Assessment, Frederic Branchaud-Charron (Universite de Sherbrooke); Andrew Achkar (Miovision Technologies Inc., Canada); Pierre-Marc Jodoin (Universite de Sherbrooke)
- Centroid Networks for Few-shot Clustering and Unsupervised Few-Shot Classification, Gabriel Huang (Mila & U.Montréal); Hugo Larochelle (Google); Simon Lacoste-Julien (Mila, Université de Montréal)
- Neural machine translation algorithms for predicting solutions to stochastic programming problems, Emma Frejinger (University of Montreal); Eric Larsen (Université de Montréal)
- Crowdsourcing Insect Observations to Assess Demographic Shifts and Improve Classification, Léonard Boussioux (Ecole Centrale Paris, Mila, MIT); Charles Guille-Escuret (U. Montreal, Mila); Tomas Giro-Larraz (Ecole Centrale Paris, EPFL); Mehdi Cherti (Mines Paristech); Balaszs Kegl (ChaLearn)
- Deep Parametric Indoor Lighting Estimation, Marc-André Gardner (Université Laval); Christian Gagné (Université Laval); Jean-Francois Lalonde (Université Laval)
- Fourier Bases for Reinforcement Learning on Combinatorial Puzzles, Horace Pan (UChicago); Risi Kondor (U. Chicago)
- Off-Policy Deep Reinforcement Learning without Exploration, Scott Fujimoto (McGill University); David Meger (McGill University); Doina Precup (McGill University)
- Learning what to learn using replay memory, Raymond Chua (McGill University); Margarida Carvalho (Université de Montréal); Rui Ponte Costa (University of Bristol); Doina Precup (McGill University)
- A Vector Representation of Time, Seyed Mehran Kazemi (Borealis AI); Rishab Goel (Borealis AI); Sepehr Eghbali (Borealis AI); Janahan Ramanan (Borealis AI); Jaspreet Sahota (Borealis AI); Sanjay Thakur (Borealis AI); Stella Wu (Borealis AI); Cathal Smyth (Royal Bank of Canada); Pascal Poupart (Borealis AI); Marcus Brubaker (Borealis AI)
- Towards Safer X-rays, Paria Kargar Samani (McMaster University); Shahram Shiranin (McMaster University)
- TT-Transformer: Tensorizing the Transformer, Charles C Onu (McGill University)
- SALSA-TEXT : Self Attentive Latent Space Based Adversarial Text Generation, Jules Gagnon-Marchand (Huawei Technologies); Hamed Sadeghi (Huawei Technologies ); Md. Akmal Haidar (Huawei Technologies); Mehdi Rezagholizadeh (Huawei Technologies)
- Cycle-consistent 3D rotations via autoencoders, Christopher Beckham (Ecole Polytechnique de Montreal); Derek Nowrouzezahrai (McGill University); Christopher Pal (École Polytechnique de Montréal )
- Recommender system pre-selection strategies with a reduced feature set, Adam Woznica (Expedia Group); Jan Krasnodebski (Expedia Group)
- A Tight and Unified Analysis of Extragradient for a Whole Spectrum of Differentiable Games, Waïss Azizian (Mila, University of Montreal, Ecole Normale Supérieure de Paris); Ioannis Mitliagkas (Mila & University of Montreal); Simon Lacoste-Julien (Mila, Université de Montréal); Gauthier Gidel (Mila, Université de Montréal, Element AI)
- Lower Bounds and Conditioning of Differentiable Games, Adam Ibrahim (Mila, Université de Montréal); Waïss Azizian (Mila, University of Montreal, Ecole Normale Supérieure de Paris); Gauthier Gidel (Mila, Université de Montréal, Element AI); Ioannis Mitliagkas (Mila & University of Montreal)
- Option Discovery by Aiming to Predict, Veronica Chelu (McGill University); Doina Precup (McGill University)
- FoCL: Feature-oriented Continual Learning, Qicheng Lao (Concordia University); Mehrzad Mortazavi (Concordia University); Ahmad Pesaranghader (Dalhousie University); Marzieh Tahaei (McGill Unviersity); Francis Dutil (Imagia); Thomas Fevens (Concordia University); Mohammad Havaei (Imagia)
- ExTra: Transfer guided Exploration, Rishabh Madan (Indian Institute of Technology Kharagpur); Anirban Santara (Indian Institute of Technology Kharagpur); Balaraman Ravindran (Indian Institute of Technology, Madras); Pabitra Mitra (IIT Kharagpur)
- In Support of Over-Parametrization in Deep Reinforcement Learning: an Empirical Study, Brady Neal (Mila, Université de Montréal); Ioannis Mitliagkas (Mila & University of Montreal)
- DENN: Diverse Extrapolation in Neural Networks, Maxime Wabartha (McGill University); Audrey Durand (McGill University); Vincent François-Lavet (McGill University); Joelle Pineau (McGill / Facebook)
- Online Continual Learning with Maximally Interfered Retrieval, Rahaf Aljundi*, Lucas Caccia*, Eugene Belilovsky*, Massimo Caccia* (Mila), Min Lin, Laurent Charlin, Tinne Tuytelaars
- A Closer Look at the Optimization Landscapes of Generative Adversarial Networks, Hugo Berard (Mila, Facebook); Gauthier Gidel (Mila, Université de Montréal, Element AI); Amjad Almahairi (Element AI); Pascal Vincent (Facebook FAIR & MILA Université de Montréal); Simon Lacoste-Julien (Mila, Université de Montréal)
- Towards Interpretable Molecular Graph Representation Learning, Julien Horwood (InVivo AI); Emmanuel Noutahi (InVivo AI); Dominique Beani (InVivo AI); Prudencio Tossou (InVivo and Université Laval)
- Towards fingerprint-based drug generation, Basile Dura (InVivo AI and MILA); Prudencio Tossou (InVivo and Université Laval)
- A Data-Driven Approach for the Accurate Characterization of Drug-Drug Interactions, Mazid A OSSENI (Laval University); Rogia Kpanou (Laval University/ Invivo AI); Prudencio Tossou (Laval University/ InvivoAI)
- The Geometry of Sign Gradient Descent, Lukas Balles (University of Tuebingen); Fabian Pedregosa (Google); Nicolas Le Roux (Google)
- Towards Using Deep Learning for Plan and Intent Recognition, Mariane Maynard (Université de Sherbrooke); Thibault Duhamel (Université de Sherbrooke); Froduald Kabanza (Université de Sherbrooke)
- CT-SGAN: Computed Tomography with 3D Synthetic Medical Images using Recurrent Generative Adversarial Networks, Ahmad Pesaranghader (Dalhousie University); Lisa Di Jorio (Imagia Cybernetics Inc); Francis Dutil (Imagia); Tess Berthier (Imagia); Qicheng Lao (Concordia University); Mohammad Havaei (Imagia)
- Efficient Goal-Directed Molecular Synthesis Using Reinforcement Learning, Julien Horwood (InVivo AI); Emmanuel Noutahi (InVivo AI); Prudencio Tossou (InVivo and Université Laval)
- An hetero-modal framework for medical image synthesis applied to MRI, Daniel Gourdeau (Université Laval); Simon Duchesne (Université Laval); Louis Archambault (Université Laval)
- Information matrices and generalization, Valentin Thomas (Mila, Université de Montréal); Fabian Pedregosa (Google); Bart van Merriënboer (Google); Pierre-Antoine Manzagol (Google); Yoshua Bengio (Mila); Nicolas Le Roux (Google)
- GEAR: Geometry-Aware Rényi Information, Jose D Gallego Posada (Mila, Université de Montréal); Ankit Vani (Mila, Université de Montréal); Max Schwarzer (Mila, Université de Montréal); Simon Lacoste-Julien (Mila, Université de Montréal)
- Do Causal Models Adapt Faster to Interventions?, Rémi Le Priol (Mila & University of Montreal); Yoshua Bengio (Mila); Simon Lacoste-Julien (Mila, Université de Montréal)
- A grid-based deep learning approach for human activity recognition in realistic environments, Soufiane Lamghari (Polytechnique Montreal); Guillaume-Alexandre Bilodeau (Polytechnique Montréal); Nicolas Saunier (Polytechnique Montreal)
- Reinforcement Learning with Competitive Ensembles of Information-Constrained Primitives, Shagun Sodhani (MILA); Anirudh Goyal (University of Montreal); Jonathan Binas (Mila, Montreal); Xue Bin Peng (UC Berkeley); Sergey Levine (UC Berkeley); Yoshua Bengio (Mila)
- Mimicking the Physics of Radiation Treatment Planning with Neural Networks, Cem Subakan (MILA); Marc Andre Renaud (Polytechnique Montreal); Laurent Charlin (University of Toronto); Louis-Martin Rousseau (Polytechnique Montreal)
- Hyperparameter Optimization in Black-box Image Processing using Differentiable Proxies, Ethan Tseng (Princeton University); Felix Yu (Princeton University); Yuting Yang (Princeton University); Fahim Mannan (Algolux); Karl St-Arnaud (Algolux); Derek Nowrouzezahrai (McGill University); Jean-Francois Lalonde (Université Laval); Heide Felix (Stanford University)
- Learning Lexical Subspaces in the Distributional Vector Space, Kushal Aora (MILA); Aishik Chakraborty (McGill University/MILA); Jackie Chi Kit Cheung (McGill University / Mila)
- Enhancing clinical outcome prediction with notes, Mohammad Hashir (Mila, Université de Montréal)
- Fast Adaptation and Slow Meta-Learning of Neural Causal Models, Nan Rosemary Ke (Mila, University of Montreal); Olexa Bilaniuk (MILA, Polytechnique Montreal); Anirudh Goyal (University of Montreal); Chris J Pal (MILA, Polytechnique Montréal, Element AI); Yoshua Bengio (Mila)
- Recurrent Adversarial Training for Smart Meters Privacy, Mohammadhadi Shateri (Mcgill University); Francisco Messina (McGill University); Pablo Piantanida (CentraleSupélec – Mila); Labeau Fabrice (McGill University)
- Attentive Eligibility: Re-examining the Credit Assignment Problem in the Function Approximation Setting, Basile Dura; Julien Horwood (Mila); Clément Jumel (Mila)
- Energy-efficient binarized neural networks with unreliable memory cells, Henwood Sebastien (Polytechnique Montreal); Leduc-Primeau François (Polytechnique Montreal)
- Analysis of Recurrent Neural Network Models for Visual Working Memory : Towards Brain Modelling, Pravish Sainath (Universite_ de Montréal); Guillaume Lajoie (Université de Montréal, Mila)
- Benchmarking Bonus-Based Exploration Methods on the Arcade Learning Environment, Adrien Ali Taiga (MILA, Université de Montréal); Marlos C. Machado (Google Brain); Marc G. Bellemare (Google Brain); Aaron Courville (MILA, Université de Montréal); Liam Fedus (Google)
- Analysis of Features for Long Term Popularity Prediction of Youtube Videos, Sri Charan Reddy Ragireddy (IIT Kharagpur)
- Deep Demosaicing, Vahid Partovi Nia (Huawei Noah’s Ark Lab); Ramchalam Ramakrishnan (Huawei Noah’s Ark Lab); Shangling Jui (Huawei Kirin Solution)
- Foothill Regularizer as a Binary Quantizer, Vahid Partovi Nia (Huawei Noah’s Ark Lab); Mouloud Belbahri (Huawei Technologies); Matthieu Courbariaux (universite de montreal); Eyyüb Sari (Huawei Technologies); Xinlin Li (Huawei Noah’s Ark Lab)
- Network sampling and applications to big data and machine learning, Antoine Rebecq (Shopify / Universite Paris Nanterre)
- AI-empowered Decision Support System for Early Diagnosis of Rheumatoid Arthritis in Primary Care using scare dataset, Samira Rahimi (McGill University)
- N-BEATS: Neural basis expansion analysis for interpretable time series forecasting, Boris Oreshkin (Element AI); Dmitri Carpov (Element AI); Nicolas Chapados (Element AI & Imagia); Yoshua Bengio (Mila)
- DeepRepair: A framework for error detection and correction, Meghana Moorthy Bhat (The Ohio State University); Yogesh Chellappa (University of Wisconsin Madison); Manjunath Shettar (University of Wisconsin Madison)
- An Optical Braille Recognition System for Enhancing Braille Literacy and Communication between The Blind and Non-blind, Wan-Chun Su (McGill University); Ting-Yi Su (McGill University); Helen Gezahegn (University of Alberta); Marin Ito (McGill Unversity)
- Towards Reducing Bias in Gender Classification, Komal Teru (Mila, McGill University)
- Striving for Simplicity in Off-policy Deep Reinforcement Learning, Rishabh Agarwal (Google Research, Brain Team); Dale Schuurmans (Google / University of Alberta); Mohammad Norouzi (Google Brain)
- Affective Computing to detect Depression, Manan Dey (SAP LABS); Shanya Sharma (SAP LABS)
- Patents, Innovation and Growth in Canadian Pharmaceuticals, Marlène KOFFI (University of Montreal); Vasia Panousi (University of Montreal)
- Approximate dynamic programming and reinforcement learning for partially observed systems, Jayakumar Subramanian (McGill University); Aditya Mahajan (McGill University)
- Quadcopter Navigation by Scene Recognition with Deep Reinforcement Learning, Dong Wang (Polytechnique de Montreal); Giovanni Beltrame (Polytechnique de Montreal)
- Data-Efficient Decentralized Place Recognition with 3D Constellations of Objects, Benjamin Ramtoula (Polytechnique Montréal / EPFL); Ricardo de Azambuja (Polytechnique Montreal); Giovanni Beltrame (Polytechnique de Montreal)
- Vector Quantized Replay for Continual Learning, Lucas Caccia (McGIll); Eugene Belilovsky (Mila); Joelle Pineau (McGill / Facebook)
- Optimizing Medical Report Generation for Clinical Pertinence, Wisdom E D’Almeida (KIIT )
- Quantifying Exposure Bias, Kushal Aora (MILA); Jackie Chi Kit Cheung (McGill University / Mila); Doina Precup (McGill University)
- Internal representation dynamics and geometry in recurrent neural networks, Stefan Horoi (Université de Montréal); Guillaume Lajoie (Université de Montréal, Mila); Guy Wolf (Université de Montréal)
- TextCode: Temporal Medical Text & Code Representation, Sajad Darabi (University of California Los Angeles)